School of

OCEANOGRAPHY

WKilimag copy
Sea grant Depository

STUDIES OF JUVENILE
SALMONIDS OFF THE OREGON AND WASHINGTON COAST, 1982

by

J. P. Fisher, W. G. Pearcy and A. W. Chung

Oregon State University Sea Grant College Program ORESU-T-83-003

Addendum to "Studtes of juvenile salmonids off the Oregon and Washington coast, 1981 ": CWT's decoded after publication

STUDIES OF JUVENILE SALMONIDS

OFF THE OREGON AND WASHINGTON COAS'T, 1982

by
J.F. Fisher, W.G. Pearcy and A.W. Chung

School of Oceanography
Oregon State University
Corvallis, Oregon 97331

ACKNOWLEDGMENTS

This research was supported by NOAA, National Marine Fisheries Service, Northwest and Alaska Fisheries Center (Contract $81-A B C-00192$, Programatic 8) and by NOAA, Office of Sea Grant (Grant No. NABlAA-D-OC086; Project No. R/OPF-17). Additional financial assistance was generously provided by oregon Aqua-Foods, Inc., Northwest Marine Technology, Inc. and Anadromous, Inc.

We would also like to thank W. McNeil, B. Suzumoto, V, Jackson and other personnel of Oregon Aqua-Foods, Inc. for pigment marking smolts and supplying samples from various release groups; S. Lewis and R. Buckmann of the ODFW Marine Regional Office for supplying Floy tags, a marking gun and information on recoveries of tagged fish; the personnel of the ODFW Clackanas laboratory for decoding CWT's; various agency tag coordinators for supplying release data on tag groups; W. Wakefield for preparing for the cruises; w. Wakefield, R. Brodeur, J. Shenker, D. Gushee and C. Banner for their long hours at sea; R. Brodeur and J. Shenker for processing collections irn the laboratory; M. Hall of the Environmental Remote Sensing Applications Laboratory, O.S.U. for organizing the radiometer flyover on short notice; and the captain and crew of the F / V Pacific Warwind for their cooperation in this study.

CRUISE PERSONNEL

MAY:	A. Chung, D. Gushee, J. Fisher, W. Pearcy and W. Wakefield.
JUNE:	R. Brodeur, A. Chung, J. Fisher and J. Shenker.
SEPTEMBER:	C. Banner, R. Brodeur, A. Chung and J. Fisher.

TABLE OF CONTENTS

Page
ACKNOWLEDMENTS i
CRUISE FERSONNEL i
INTRODUCTION 1
METHODS 1
Vessel and Gear 1
Sampling Area 1
Environmental Data 4
Pigment Marking of Coho Smolts 5
Processing the Catch at Sea 5
Laboratory Processing of Juvenile Salmonids 7
RESULTS 7
Ocean Conditions 7
Catch of Salmonids 8
Coho Length-Frequency Distributions 11
Catch Per Set of Juvenile Coho 11
Recoveries of Marked Juvenile Coho 15
Chinook Length-Frequency Distribtuions 19
Catch Per Set of Juvenile Chinook 19
Recoveries of CWT Juvenile Chinook 23
Length-Frequency Distribtuions of Chum and and Sockeye Salmon and Steelhead and Cutthroat Trout 23
Bacterial Kidney Disease 26
Recoveries of Floy-tagged Adult Salmon 26
REFERENCE 26
APPENDIX A. Purse seine set locations and environmental data 28
APPENDIX B. Catch of salmonids by set 32
APPENDIX C. Release and recovery data for individual CWT and pigment marked salmonids 38

INTRODUCTION

The School of Oceanography, Oregon State University, conducted three cruises (May 19-June 2, June 7-22, and September 4-14) in 1982 to study the distribution, abundance, migration, growth and feeding habits of juvenile salmonids during their first summer in the ocean. This is the second year we have had a series of cruises during the summer months and the fourth year that we have sampled the oregon and Washington coasts during June. The purpose of this report is to describe the sampling area and methods used for the 1982 cruises and to present some preliminary results.

METHODS

Vessel and Gear
The Pacific Warwind, a $28-\mathrm{m}(92-\mathrm{ft})$ comercial drum purse seiner was chartered for these cruises. A herring purse seine of 32 mm ($1 \frac{1}{4}-i n$) stretch measure mesh and approximately 495 mi long was used to collect salmonids and associated nekton. All sets were round hauls, where the net was laid out in a circle by seiner and skiff. A depth gauge attached to the bottom of the net indicated that the seine fished to depths of $50-67 \mathrm{~m}$. Each set sampled approximately $19,100 \mathrm{~m}^{2}$ and 955,000 to $1,280,000 \mathrm{~m}^{3}$.

Sampling Area

Sets were made at stations generally 5 nautical miles apart along transect Iines extending from Waatch Point, Washington to the Siuslaw River, Oregon in May and from the Quinault River, Washington to Yachats, Oregon in June and September (Figs. 1 and 2). We sampled from as close to the coast as we could safely set the seine (to approximately the $55-\mathrm{m}$ contour) out to 20 miles. If salmon were present at the 20 mile station an attempt was made to sample out to 25 or 30

Figure 1. Names and locations of transect lines sampled during 1982.

Figure 2. Locations of transect lines sampled during the May, June, and September cruises.
miles. At the Destruction Island, Quinault River, Grays Harbor and Willapa Bay transects, where the shelf is quite shallow, the closest sets to shore were at 10 miles. Sets were made to within 6 to 8 miles of shore at the other Washington transects. Off Oregon, where the shelf is steeper, sets were generally to within 3 to 5 miles of shore.

Sixteen transests were sampled during the May cruise, 13 during the June cruise and 10 during the September cruise (Fig. 2). Set locations were determined by Loran C coordinates and water depth as determined with the ship's depth recorder. A total of 173 purse seine sets were made during the three cruises. of these, 17 were aborted or were non-quantitative because of gear problems or bad sea conditions. Locations of purse seine sets along with some environmental data are listed in Appendix A.

Environmental Data

Surface water samples were taken at each purse seine station. Temperatures were measured and water samples were obtained for later salinity determinations with a Guildine Autosalinometer (Model 8400). Salinity and temperature profiles of the water colum were obtained at most stations with a self-contained Applied Microsystems CTD-12.

Ocean surface temperatures over the area from Leadbetter Point, Washington to Cape Lookout, Oregon and from the shore out to 30 miles were measured with an infrared radiometer (Barnes PRT-5) from on an aircraft at an altitude of 1000 ft on June 8, 1982. Tais flight was operated by personnel from the Environmental Remote Sensing Applications Laboratory at O.S.U.

Water clarity was measured with a 30-cm Secchi disk. Ambient light intensity was measured at deck level using a Spectra fumicon light meter.

To estimate surface chlorophyll concentrations a 500 ml water sample was taken at each station about one meter below the surface and filtered through a $0.3 \mu \mathrm{~m}$ glass fiber filter. The filtrate was frozen and chlorophyll-a and phaeophytin-a were extracted from the filtrate at a later time with 90% acetone, and their concentrations were measured using a model-10 Turner Designs florometer.

Zooplankton tows were made at several stations using a 70 -cm mouth diameter, 0.333 mm Nitex mesh, cylindrical-conical plankton net. Zooplankton sampling was not extensive due to time constraints.

Pigment Marking of Coho Smolts

To increase the number of marked coho smolts produced by oregon Aqua-Foods, Inc. (OAF) in the ocear during September, 835,229 smolts were spray marked with fluorescent pigment prior to their transport from OAF's Springfield hatchery to the release facility on Yaquina Bay. These fish were marked in two groups. The first group, marked with red pigment, was released August 1 to 3, 1983; the second group, marked with yellow pigment, was released August 29 to September 1 , 1982. Based on studies of pigment retention and mortality of fish prior to release, we estimate that about 350,000 fish with red marks and 295,000 with yellow marks were actually released into the ocean. All coho collected during September $<300 \mathrm{~mm}$ fork length (FL) were checked under ultraviolet light for pigment marks.

Processing the Catch at Sea

The purse seine catch was either dipnetted from the seine bunt, lifted aboard in the bunt or brailed aboard. Large catches of jellyfish were quite common and a rough estimate was made of their total volume in each set. Species
were counted and individual bell diameters were measuxed from a subsample of jellyfish. Fishes and squids were also identified and counted and lengths were measured. Stomachs were removed from possible predators on juvenile salmonids (black rockfish, hake, blue shark, etc.) and preserved in loq formalin. Selected whole fishes and squids were also preserved.

Juvenile salmonids. Small salmonids were anesthesized with MS 222, identified, measured to the nearest millimeter ($F 1$), checked for adipose clips and other external marks, individually wrapped in plastic bags (along with a label identifying set number, species and length) and frozen.

Adult salmonids. Adult salmonids were anesthesized with MS 222, identified, measured, sampled for scales, and examined for adipose clips and other marks. Heads from adipose clipped adults were removed, labeled and frozen for later recovery of coded wire tags.

Kidney smears were taken from 65 adult coho, 36 adult chinook and 1 adult chum salmon for a study of bacterial kidney disease (BKD) by Craic Banner, Department of Microbiology, O.S.U. Stomachs were removed and preserved from all adult salmon killed.

Most adults were released after they were measured and scale samples removed. In order to trace movements of adult salmon in the ocean 194 coho, 73 chinook, 4 chum and 1 sockeye were tagged with orange Floy tags below the dorsal fin using a Dennison Mark II tagging gun. The Floy tags were supplied by the ODFW Marine Regionel Office, Newport, Oregon. Fish were released after they had recovered from the anaesthetic in a tank of circulating sea water. All fish were active when released to the ocean, although sometimes badly descaled.

Abstract

Laboratory Processing of Juvenile Salmonids Each frozen juvenile salmon was given a serial number (collection year, seine set number and fish sequence number), weighed in its tared plastic bag, re-identified, and examined for fluorescent pigment marks (September) under ultraviolet light, and re-examined for adipose fin clip and other marks. Scales from a subsample of 25 fish of each salmonid species from each set were removed from the preferred area (see Scarnecchia, 1979) mounted on gum cards and acetate impressions made in preparation for future growth studies. Heads from individuals with adipose fin clips were removed and sent to the Oregon Department of Fish and Wildife for coded wire tag removal and decoding. Stomach contents from 10 fish of each species for each set were removed, weighed and preserved in 5% buffered formalin. Kidney smears from these fish were examined for BKD by the Department of Microbiology, O.S.U.

RESULTS

Ocean Conditions

Upweling was exceptionally strong during May 1982. The Bakun upwelling index for $45^{\circ} \mathrm{N}-125^{\circ} \mathrm{W}$ reached its highest value for May since 1967. As a result of the strong northerly winds and upwelling, the sea surface temperatures were cool off Oregon and Washington, averaging $10.8^{\circ} \mathrm{C}$ at the stations sampled. Temperatures $20-30$ miles offshore were all less than $12.3^{\circ} \mathrm{C}$, indicating a broad zone of cool water during this month. The chlorophyll-a content of surface water was much higher during May than the other periods, indicating a high standing stocks of phytoplankton.

Upwelling during June was not strong and the upwelling index was about the same as in June of other years in the late $70^{\prime} s$ and early $80^{\prime} s$. Sea surface
temperatures averaged $11.6^{\circ} \mathrm{C}$ during this month, but temperatures were cooler (8.8-9. $2^{\circ} \mathrm{C}$) south of Nehalem Beach where upwelled water with high salinity $(>33 \%$) was present. Sea surface temperatures measured with the infrared radiometer on June 8,1982 during the aircraft overflight showed a weak inshore-offshore gradient (Fig. 3). Highest temperatures ($>13^{\circ} \mathrm{C}$) converged in the area north of Cape Disappointmen=, and lowest temperatures ($<10^{\circ} \mathrm{C}$) were found nearshore south of Nehalem. The sea surface temperatures measured from the seiner from 9 to 15 miles offshore, Willapa Bay to warrenton, on ưne 10 were very similar to those measured from the aircraft in the same area.

During the sejtember cruise surface temperatures were warm, averaging $15.3^{\circ} \mathrm{C}$. Cooler water of $14.5^{\circ} \mathrm{C}$ or less was only encountered south of the Solumbia River and temperatures lass than $13^{\circ} \mathrm{C}$ were only found within 3 miles of shore south of Nehalem Beach.

Catch of Salmonids

Seven species of salmonids occurred in the purse seine collections (Table l; Appendix B). Juvenile coho that had entered the ocean in spring or summer 1982 were the most common salmonid during all three cruises. (These are designated as .0 age, where the digit to the left of the period indicates the years spent in fresh water and the digit to the right indicates years in the ocean.) These . O age coho comprised 58 of the total salmonid catch. Juvenile chinook salmon were the next most numerous salmonid (16\% of the catch). They were conuon in catches during the May and June cruises but few were caught in September. Numbers of 0.0 age chum salmon, on the other hand, increased during the cruises and they were the second most numerous salmonid during the September eruise. Juvenile steelhead and cutthroat trout and pink and sockeye salmon were collected, but they were not

Figure 3. Sea-surface isotherms on June 8, 1982. Temperatures were measured with an infrared radiometer along the aircraft tract lines indicated.

numerous. All the 0.0 age pink were captured during the September cruise. Maturing (.1+) coho, chinook, chum and sockeye salmon were also captured.

A total of 88 juvenile coho (5.18) and 34 juvenile chinook (7.4\%) had coded wire tags. Details on the release and recapture of fish with CW's are given in Appendix C.

Coho Length-Frequency Distributions
Length-frequency distributions of coho for each cruise and three different areas are given in Figure 4. The size separation of juveniles (age . O) from adult fish (age .1) was distinct for all three months. During May most juveniles were between 121 and 210 mm FL and during June between 121 and 250 mm FL.

During September the coast-wide catch of juveniles was trimodal, with three modes north of the Columbia, two modes between Seaside and Nehalem and only one mode from Cape Lookout south. Average size decreased from north to south. The wide size range of juvenile cono (131 mm to 410 mm) in September was due to the presence of both recently released oregon Aqua-Food's coho and juveniles that had entered the cocean earlier in the season.

Very few adult coho were collected in September compared to May and June (Fig. 4). The adults may have been close inshore, or their depth distribution may have changed making them less available to the purse seine during this period when surface seawater temperatures were warm.

Catch Per Set of Juvenile Coho
During May the mean catch per set was low north of the Columbia River, increased betweer. Warrenton and Nehalem, and was high south of Cape Lookout (Table 2). Two exceptionally large catches of juvenile coho were made on the
MAY 1982

Figure 4. (cont.)
Table 2. Number of sets and mean catch per set of juvenile coho and chinook by area and cruise.

Species	Area	No. of sets/(catch per set)		
		May	June	September
Juvenile Coho	Waatch Pt. to Cape Disapp.	$27(0.4)$	$21(16.6)$	19(11.1)
	Warrenton to Nehalem	13(1.3)	10(8.8)	7 (16.1)
	Cape Lookout to Siuslaw	22(22.8)	25(15.6)	12(7.4) *
Juvenile Chinook	Waatch Pt. to Cape Disapp.	27 (1.9)	$21(10.0)$	$19(0.2)$
	Warrenton to Nehalem	13(7.1)	10(0.8)	7 (0.0)
	Cape Lookout to Siuslaw	$22(3.6)$	25(0.4)	12(0.9)*

[^0]Wecoma Beach transect in May (Appendix B), but even excluding these the mean catch per set (6.6) was still much higher in this southern area than in the two areas to the north.

The mean catch per set of juvenile cono during the June cruise was lmeet as high north of the Columbia as south of Cape Lookout. During September mean catch per set was higher north of Cape Lookout than south of Cape Lookout. Recoveries of Marked Juvenile Coho

Over the summer 88 CWT and 6 fluorescent pigment marked juvenile coho were collected (Table l. Appendix C). Eight of 96 juvenile coho with missing adipose fins (8.38) had no CWT's.

Recovery datá for major hatchery groups of CWT juvenile coho are summarized by cruise and area in Table 3. During May most CWT juvenile coho were collected south of Cape Lookout. Most of these originated from Columbla River hatcheries, released about one month prior to recapture. All but one fish were collected south of where they entered the ocean; the one exception was a fish that had been released 76 days earlier.

Both catch per set (Table 2) and distribution of CWT juvenile coho (Table 3) indicate a southward movement of small juvenile coho in the ocean off oregon and Washington duning May 1982. This movement may have been active or passive. As mentioned earlier, upwelling was strong during May resulting in relatively strong surface currents that may have transported the smolts to the south. The composition of the CWT catch indicates that some fish in a release group tend to stay together during their downstrean and early ocean migrations. In two sets within two miles of each other on the Wecoma Beach transect 17 CWT Columbia River fish were collected; 4 were released from Cowlitz hatchery on
Table 3. Summary by month and area of days since release, north-south distance between point of ocean entrance and ocean capture, and size of CWT and pigment marked juvenile coho.
Hatchery
Group
Mean (Range)

May	Warrenton to Nehalem	1980 BroodColumbia River	I	25	6 S	138
May	Cape Lookout to Siuslaw	$\begin{aligned} & 1980 \text { Brood- } \\ & \text { Columbia River } \end{aligned}$		30 (26-33)	76 S (74 S - 95 S)	155 (136-188)
		1980 BroodCoastal Washington	2	12,0-35	114 S, 141 S	133,143
		1980 BroodCoastal Oregon	2	31,76	25, 61 N	147,193
June	Quinault to Breakers	$\begin{aligned} & 1980 \text { Brood- } \\ & \text { Coastal Washington } \end{aligned}$		27 (12-49)	13 S (25 s-20 N)	154 (127-224)
		1980 BroodColumbia River	2	17,35	$15 \mathrm{~N}, 8 \mathrm{~N}$	137,147
June	Warrenton to Nehalem	1980 BroodColumbia River	3	19,20,38	$35 \mathrm{~S}, 34 \mathrm{~S}, 25 \mathrm{~s}$	136,146,204
June	Cape Lookout to Yachats	1980 BroodCoastal Washington	1	51	80 s	145
		1980 Brood- Columbia River	12	37 (18-50)	$58 \mathrm{~S}(54 \mathrm{~S}-80 \mathrm{~s})$	167 (141-205)
		1980 BroodCoastal Oregon	9	72 (30-97)	$46 \mathrm{~N}(18 \mathrm{~N}-80 \mathrm{~N})$	203 (162-274)

Table 3. (cont.)

Cruise	Area	Hatchery Group	n	Days since Release: Mean (Range)	North-South Distance from Ocean Entrance (naut. miles): Mean (Range)	Fork Length (mm): Mean (Range)
Sept.	Quinault to Cape Disappointment	1980 BroodColumbia River	10	116 (87-157)	$43 \mathrm{~N}(5 \mathrm{~N}-65 \mathrm{~N})$	316 (268-373)
		1980 BroodCoastal Oregon	1	129	85 N	352
		$\begin{gathered} 1981 \text { Brood- } \\ \text { OAF } \\ \hline \end{gathered}$	4	32 (10-62)	113 N (103 N - 143 N)	199 (181-242)
Sept.	Seaside to Nehalem	1980 BroodCoastal Oregon	1	131	45 N	336
		$\begin{aligned} & 1981 \text { Brood- } \\ & \text { OAF } \end{aligned}$	5	50 (15-86)	79 N (79 N)	207 (166-246)
Sept.	Cape Lookout to Yachats	$\begin{aligned} & 1981 \text { Brood- } \\ & \text { OAF } \end{aligned}$	5	16 (12-21)	$31 \mathrm{~N}(18 \mathrm{~s}-44 \mathrm{~N})$	177 (155-204)
		$\begin{aligned} & 1980 \text { Brood- } \\ & \text { OAF } \end{aligned}$	1	130	17 S	408

May 3, 3 from Sandy on April 30, 4 Erom Lower Kalama on May 3, 3 from Eagle Creek on May 3-6, 2 from Big Creek on April 28 and 29 and one from Speelyai on May 4 (Appendix C).

During June CWT juvenile coho were collected both north and south of the Columbia. Most (87%) of those collected north of the Columbia were from coastal Washington hatcheries, released less than one month prior to recapture. These fish show little net north-south movenent (Table 3). Columbia River fish made up only 138 of recovered CWT's north of the Columbia and were not found farther than 15 miles north of the mouth of the Columbia River. South of the Columbia, Columbia River fish accounted for 60% of CWT recoveries. During June, coho from coastal oregon hatcheries that had been released early in the spring were generally the largest size $(\bar{x}=203 \mathrm{~mm} F \mathrm{~F})$. These juvenile CWT coho were the only ones that were consistently collected to the north of where they had entered the ocean (Table 3). They also made up a higher percentage (41\%) of the catch south of Cape Lookout in June than in May (8\%). No OAF coho smolts with CWT's were collected in May or June.

During the September cruise, all juvenile coho with CWT's collected north of the Columbia River were from Columbia River, coastal Oregon or oAf hatcheries. No coastal Washington CWT fish were collected in any of the regions sampled. Six Columbia River and 1 OAF juvenile coho were collected on the most northerly transect (Quinault River). Most of the large ($268 \mathrm{~mm}-373 \mathrm{~mm} F \mathrm{~F}$) coho with CWT's collected north of the Columbia River were Columbia River fish released three to five months previously (Table 3).

South of the Columbia, 11 of 12 CWT or pigment marked juvenije coho were from the OAF release site. These ranged in size from 155 to 246 mm FL and probably made up many of the fisk in this size mode during September in all regions (Fig. 4).

Net movement af most juvenile coho during September 1982 was to the north. All but two of the CWT . 0 age coho were collected north of where they entered the ocean. One of these was a very large (408 m FL) male with well developed testes, probably a jack (Table 3).

Summarizing ocean movements of juvenile coho during the summer of 1982: 1) Net movement off Oregon and Washington during May 1982 was generally to the south. 2) Little evidence was found for northward migration of Columbia River or coastal Oregon juvenile coho into the waters off Washington by early to mid June. 3) Fish originating from Columbia River and oregon hatcheries clearly had migrated to the north by september, while coho from coastal Washington hatcheries apparently had migrated out of the sampling area.

Chinook Length-Frequency Distributions
The varied li::e histories of chinook salmon caused a broad size range of . 0 age chinook collected during May and June (Fig. 5). The length range of . O age chinook was estimated from our catches of CWT fish. Fork lengths of CWT chinook released from fall 1981 through spring 1982 ranged from 139 mm to 316 mm in the May 1982 collections and from 150 mm to 340 mm in June 1982 collections (Table 4). In this report "juvenile" chinook are defined to be those 400 mm FL or less for the May and June cruises.

Catch Per Set of Juvenile Chinook

During the May cruise, catch per set of juvenile chinook was lowest north of the Columbia River, as it was for juvenile coho (Table 2). Catch per set was highest from Warreaton to Nehalem. During June, catch per set was high north of the Columbia River and very low elsewhere. During September very few chinook salmon were caught and the catch per set was very low.
CHINOOK

Table 4. Summary by month and area of days since release, north-south distance between point of ocean entrance and ocean capture, and size of CWT and pigment marked juvenile chinock.

Cruise	Area	Hatchery Group	n	Days since Release: Mean (Range)	North-South Distance from Ocean Entrance (naut, miles) : Mean (Rangè)	Fork Length (mm): Mean (Range)
May	Waatch Point to Cape Disappointment	1980 BroodCoastal Washington	1	47	54 s	203
		1980 BroodDomsea (Coastal Oregon-Fall release	1	$\sim 143-174$	150 N	270
May	Warrenton to Nehalem	$\begin{aligned} & 1980 \text { Brood- } \\ & \text { Columbia River } \end{aligned}$	6	63(47-73)	15 s (15.s)	183 (139-213)
May	Cape Lookout to Siuslaw	1980 BroodColumbia River	6	61 (41-76)	$61 \mathrm{~s}(55 \mathrm{~s}-94 \mathrm{~s})$	220 (173-302)
		1980 BroodColumbia River (Fall release)	1	204	74 S	306
		1980 BroodCoastal Oregon	1	91	40 N	248
		1980 BroodCoastal Oregon (Fall release)	1	247	73 N	316
June	Quinault to Breakers	1980 BroodColumbia River	12	81 (59-88)	$18 \mathrm{~N}(8 \mathrm{~N}-26 \mathrm{~N})$	224 (140-287)
		1980 BroodColumbia River (Fall release)	1	219	25 N	150
		$\begin{aligned} & 1980 \text { Brood- } \\ & \text { Domsea (Coastal } \\ & \text { regon-Fall release) } \end{aligned}$	1	2161-191	150 N	309

Table 4. (cont.)

Cruise	Area	Hatchery Group	n	Days since Release: Mean (Range)	North-South Distance from Ocean Entrance (naut. miles): Mean (Ranqe)	Fork Length (mm): Mean (Range)
June	Cape Lookout to Yachats	1980 BroodColumbia River	1	97	55 S	284
		1978 BroodColumbia River	1	834~330	55 S	355
Sept.	Cape Lookout to Yachats	1980 BroodColumbia River	1	166	116 S	340

[^1]Table 6. Size-frequency distributions of cutthroat and steelhead by month and area.

	CUTTROAT (May)			Cuttroat (June) ${ }^{\prime}$			STEELHEAD (May)			STEELHEAD (June)		
Fork Length (mm)	Waatch Pt to Cape Disapp.	Warrenton to Neha lem	Cape Lookout to Siuslaw	$\begin{aligned} & \text { Quinault } \\ & \text { to } \\ & \text { Breakers } \end{aligned}$	```Warrenton to Neha lem```	Cape Lookout to Yachats	Waatch Pt_{t} to Cape Disapp.	Warrenton to Neha lem	Cape Lookout to Siuslaw	Quinault to Breakers	```Warrenton to Nehalem```	Cape Lookout to Yachats
$\leqslant 100$												
101-110												
111-120												
121-130												
131-140												
14i-150												
151-160												
161-170								2				
171-180							4	2	1			
181-190				1				2	3			
191-200							1	2				
201-210							2		1	1		
211-220									1	1		
221-230				1			5		1			
231-240			3					1				
241-250			2		1		1	1	1			
251-260							1		1			
261-270				2								
271-280												
281-290						1						
291-300					1							
30T-310												
311-320				1								
321-330			1									
331-340												
341-350					1							
351-360			2									

No Cuttroat or Steelhead were caught in September

Juvenile pirk salmon were collected only during September north of the Columbia. They were between 151 mm and 190 mm FL.

Juvenile steelhead trout were most common during May and were fairly evenly distributed alonç the coast (Table 6). Tiney were rare during June and did not occur in September collections.

Cutthroat trout were most common south of Cape Lookout during May and north of Cape Lookout in June. They ranged from 181 mm to 360 mm in the collections (Table 6). They were not collected during September.

Bacterial Kidney Disease (BKD)
To date 228 juvenile chinook salmon collected in the ocean during 1982 have been examined for: BKD. Thirty-six (16\%) were infected. of 325 juvenile coho examined, 17 (5\%) had BKD. Of 186 juvenile chinook from 1981 ocean collections, 18 (108) had BKD; of 974 juvenile coho, 26 (3z) had BKD. The incidence of BKD was higher in juvenile chinook than in juvenile coho for fish collected during 1981 and 1982 (Craig Banner, Department of Microbiology, O.S.U.).

Recoveries of Floy-tagged Adult Salmon
Tags from $l^{\prime \prime}$ coho and three chinook salmon were returned to us. Most of these fish were caught over 30 days after being tagged and released (range 6-146 days). Over hal: were recoverd less than 30 miles north or south of the latitude of release, indicating little net north-scuth migration. Four coho tagged off Washington were :ecovered in British Columbia (Table 7).

REFERENCE

Scarnecchia, D.L. 1979. Factors affecting cono salmon production in Oregon. M.S. Thesis, Oregon State University, Corvallis, OR, 100 pp.

$\begin{aligned} & \text { Sot } \\ & \text { No. } \end{aligned}$	Date	Transect	Distanc Offshor ($\mathrm{n} . \mathrm{mi}$)		Lat.		Long.	$\begin{gathered} \text { Time } \\ \text { Start } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Depth } \\ & \text { (m) } \end{aligned}$	$\begin{gathered} \text { Bearing } \\ \text { Cotruel } \\ \hline \end{gathered}$	$\begin{gathered} \text { Temp. } \\ { }^{\circ} \mathrm{C} \text {. } \end{gathered}$	$\begin{aligned} & \text { Sal. } \\ & \left(\% \%_{0}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \text { Light } \\ (\mathrm{fe}) \end{gathered}$	Secchi (m)	Chl.a	Phae a	cri	Plankto Tow No.	Comments
001	May 19	Waatch Pt.	5.3		20.8	124	49.6	1123	62	30	10.8	32.2	1300	9.0	5.518	0.407			
002	May 19	Waatch Pt.	9.9	48	19.8	124	54.5	1256	318	50	10.4	31.7	1200	7.0	3.920	0.203			
003	May 19	Waatch Pt.	14.7	48	20.3	125	01.9	1426	218	60	11.5	31.4	1200	4.0	14.617	1.529			
004	May 19	wateh Pt.	20.1	48	20.0	125	09.6	1600	143	0	12.2	30.9	1000	10.0	0.823	0.223			
005	May 19 May 19	Waatch Ft.	24.7	48	20.2	125	16.7	1734	137	50	11.9	30.8	500	7.5	0.871	0.290			
007	May 20	Weatch Pt.	5.7 6.2	48	20.2 58.8	124	49.9	2025	59	250	9.5	32.7	100	8.0	2.823	0.323			
008	May 20	Sea Lion Rock	10.4	47	59.7	124	49.4	0837 1320	55 97	-	11.0	313.0	250	10.0	0.968	0.310		82-21	
- 0	May 20	Sed Lion Rock	14.9	47	59.8	125	03.1	1505	121	125	11.7 12.0	30.8	400 700	10.0	0.704	0.231	$\stackrel{*}{*}$	3222	
010	May 20	Sea Lion Rock	20.2	48	00.3	125	10.8	1839	154	125	12.0 11.9	30.8	700	10.0	0.358	0.230	\times	82-23	
011	May 21	Destruct. Is.	10.3	47	39.9	124	39.0	0702	55	260	11.9	30.9	200 200	13.0	0.329	0.136			
012	May 21	Destruct. Is.	10.7	47	40.2	124	39.6	i, 802	55	20	10.0	31.6	200	5.0	9.738	0.000			Aborted
013	May 21	Destruct. Is.	11.2	47	40.3	124	40.7	0921	59	--	--	--	200						Aborted
014	May 21	Destruct. Is.	15.1	47	40.3	124	46.1	1113	80	57	11.2	31.2	700	5.0	4.259	0.155	x		
015	May 21	Destruct. Is.	20.3	47	39.8	124	53.4	1335	115	30	12.1	30.9	700	11.0	0.348	0.267	x		
016	May 21	Quinault R .	19.9	47	20.4	124	46.6	1700	329+**	52	11.7	30.9	500	10.0	0.600	0.074	x		
017	May 21	Quinault R.	14.6	47	20.3	124	38.9	1849	93	20	11.4	31.3	400	8.0	0.532	0.165	\times		
018	May 21	Quinault R.	9.9	47	20.3	124	32.1	2024	57	5	10.1	31.9	60	--	21.296	0.774			
019	May 22 May 22	Grays Harbor Grays Harbor	10.1 14.8	47	60.0 59.9	124	24.9	1305	57	60	11.6	32.1	300	3.5	5.847	0.960		82-24	
021	May 22	Grays Harbor	9.9	46	59.8	124	24.7	2046	59	325	11.7	32.2	700	5.0	2.964	0.738	x	82-25	
022	May 23	willapa Bay	9.7	46	40.4	124	10.2	1023	62	80	10.5	32.1	90 700	4.0	5.953	1.539			
023	May 23	Willapa Bay	9.7		40.4	124	18.2	1137	62	52	1.0	31.6	700	4.0	5.953	1.539			
024	May 23	willapa Bay	13.8	46	41.1	124	24.3	1315	82	--	-.	--	--	--					Repat set
025	May 23	Willapa Bay	15.1	46	40.3	124	25.9	1406	90	70	11.4	32.3	725	2.5	12.197	3.348			
026	May 23	Wiliapa Bay	20.0	46	40.1	124	32.0	1715	124	--	1.. ${ }^{\text {, }}$	31.5	600	4.5	10.164	0.987	\times		
027	May 23	Willapa Bay	8.3	46	39.8	124	15.9	2000	51	110	11.2	31.8	150	--	2.081	0.532			
028	May 24	Ocean Park	9.6	46	30.4	124	17.6	702	62	--	10.8	31.5		--	7.357	1.007			
029	May 24 May 24	Cape Disapy.	7.0	46	20.7	124	13.7	903	49	60	11.4	31.1	625	6.0	2.904	0.581			
030 031	May 24 May 24	Cape Drsapp.	9,8		19.6			--	--	--	13.0	14.6	--		--	--			Aborted
032	May 27	Cape disapp.	9.8 5.6	46	19.6	124	18.0	1408 1009	150 53	--	11.8	31.0 25.0	8800	4.5 2.0	4.646 3.146	0.697 0.803			
033	May 27	Seaside	5.7	46	0.4	124	03.6	1235	57	60	10.4	3.0	800	2.0	3.146	0.803			Aborted
034	May 27	Seaside	10.1	46	00.3	124	10.0	1413	86	-	10.4	30.0	1200	3.0	5.421	1.084			
035	May 27	Seaside	10.0	46	0.0	124	10.0	1555	98	--	11.0	31.2	1000	3.5	5.421	0.620			
036	May 27	Seaside	14.7	45	59.8	124	16.9	1816	119	--	11.4	32.2	600	4.0	9.228	1.646			
$\checkmark 37$	May 27	Seaside	20.5	46	00.0	124	25.0	2002	143	--	10.6	32.2	100	3.5					
038	May 27	Scaside	25.0	46	00.2	124	31.3	2131	152	East	10.3	31.9	. 06		8.954	1.500			
039	May 28	Warrenton	14.8	46	09.3	124	19.1	1212	106	50	12.3	17.6	1000	1.0	3. 388	0.910	\times		
040	May 78	Warrenton	21.5	46	00.4	124	2 A .9	1601	135	--	10.3	32.0	700	3.5	18.876	0.871	\times		
041	May 28	warrenton	22.3	46	07.6	124	29.0	1736	134	150	10,8	32.0	450	4.9	.				
042	May 28	Warrenton	24.6	46	10.2	124	39.9	1920	155	140	11.2	31.8	160	6.0	4.937	0.467			
043	May 28	Warrenton	30.2	46	10.2	124	41.7	2054	366	150	11.4	31.7	25	5.0	1.500	0.532			Aborted
044	May 30 May 30	Nehalem	5.4	45	40.7	124	03.9	1005	71	160	9.3	33.1	500	5.0	8.518	1.239	x		
046	May 30	Nalem	15.0	45	40.6	124	10.4	1121	108	200	11.4.	31.5	750	4.5	6.582	0.387	x		
047	May 30	Nehalem		45	40.3	124	17.8	1305	141	110	12.0	29.2	1000	3.5	6.776	0.891	x		
							24.6	1506	166	100	12.2	27.4	800	3.5	5.034	0.542	x		

[^2]| $\begin{aligned} & \text { Set } \\ & \text { No. } \end{aligned}$ | Date | Transect. | Distance offshore (n.mi) | Lat. | Long. | $\begin{aligned} & \text { Tine } \\ & \text { Start } \end{aligned}$ | Depth (m) | Bearing
 (${ }^{\circ}$ true) | $\begin{aligned} & \text { Temp. } \\ & { }^{\circ} \mathrm{C} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \text { Sal. } \\ & (\% \text {) } \end{aligned}$ | Light
 (fc) | Secchi
 (m) | Cbl, ${ }^{\text {a }}$ | Phae. a | CTD | Plankton Tow No. | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 143 | Sept. 6 | willapa Bay | 12.4 | 4640.4 | 12422.1 | 0935 | 77 | 140 | 16.1 | -- | 450 | 7.5 | 2.710 | 0.310 | | | |
| 144 | Sept. 6 | willapa Bay | 12.0 | 4640.3 | 12421.5 | 0945 | 77 | -- | 16.1 | -- | 550 | 6.0 | - | -- | x | | Repeat Set |
| 145 | Sept. 6 | willapa Bay | 14.9 | 4640.0 | 12425.6 | 1105 | 88 | 140 | 16.1 | 31.1 | 700 | 12.5 | 1.036 | 0.161 | x | | |
| 1.46 | Sept. 6 | Willapa Bay | 20.2 | 4639.9 | 12433.0 | 1309 | 126 | 245 | 16.5 | 31.4 | 350 | 11.5 | 0.490 | 0.149 | * | | |
| 147 | Sept. 6 | Cape Disapp. | 19.4 | 4620.4 | 12431.5 | 1730 | 137 | 145 | 15.4 | 25.8 | 190 | 4.0 | 7.938 | 0.658 | | | |
| 148 | Sept. 6 | Cape Disapp. | 14.9 | 4620.0 | 12425.1 | 2007 | 126 | 330 | 15.5 | 25.4 | 0.1 | -- | 5.905 | 0.949 | x | | |
| 149 | Sept. 6 | Cape Disapp. | 7.0 | 4620.0 | 12414.0 | 0643 | 53 | 110 | 15.6 | 24.9 | 110 | 4.0 | 7.725 | 0.569 | x | 82-212 | |
| 150 | Sept. 7 | Cape Disapp. | 10.0 | 4620.1 | 12418.2 | 0948 | 79 | 150 | 15.8 | 25.2 | 558 | 4.0 | 9.293 | 0.000 | x | | |
| 151 | Sept. 7 | Cape Disapp. | 9.2 | 4620.1 | 12417.7 | 1050 | 77 | 155 | -- | -- | -- | -- | -- | -- | | | Repeat Set |
| 157 | Spre. 7 | cam micam. | 15.5 | 4620.0 | 17435.3 | 1237 | 129 | 140 | 15.5 | | 400 | 4.5 | 4.300 | 0.571 | | | mborred |
| 153 | Sept. ${ }^{7}$ | Seaside | 19.3 | 4559.0 | 12423.6 | 1634 | 137 | 270 | 17.4 | -- | 250 | 4.5 | 3.098 | 0.387 | | | Not quantitative |
| 154 | Sept. 8 | Tillamook Rk. | 2.4 | 4556.3 | 12402.9 | 0744 | 57 | 260 | 14.1 | 31.8 | 350 | 4.5 | 4.066 | 2.207 | x | | |
| 155 | Sept. 8 | Tillamook Rk. | 5.1 | 4556.3 | $12406+7$ | 1002 | 79 | 255 | 15.0 | 31.5 | 250 | 7.5 | 1.113 | 0.165 | x | | |
| 156 | Sept. 9 | Hug point | 9.3 | 4550.5 | 12411.2 | 1046 | 104 | 195 | 16.5 | -- | 200 | 4.5 | 1.682 | 0.515 | \times | | |
| 157 | Sept. 9 | Hug point | 15.1 | 4550.4 | 12419.1 | 1345 | 144 | 40 | 16.6 | 29.1 | 300 | 7.0 | 1.210 | 0.184 | \times | | |
| 158 | Sept. 9 | Hehalem | 20.1 | 4540.2 | 12435.0 | 1640 | 172 | 35 | 16.7 | 31.2 | 400 | 9.0 | 0.552 | 0.122 | x | | |
| 159 | Sept. 9 | Nehalern | 14.8 | 4539.2 | 12417.4 | 1810 | 143 | 100 | 15.9 | 31.4 | 200 | 7.5 | 0.968 | 0.310 | | | |
| 160 | Sept. 9 | Nehalem | 3.1 | 4540.0 | 12400.8 | 2050 | 55 | 23 | 15.2 | 31.5 | -- | -- | 1.055 | 0.211 | x | | |
| 161 | Sept. 11 | Cape Lookout | $2.0+$ | 4520.7 | 12402.3 | 1707 | 55 | 70 | 13.9 | 32.0 | -- | 5.5 | | | x | | |
| 162 | Sept. 11 | Cape Lookout | 4.9 | 4521.1 | $\begin{array}{llll}124 & 05.4\end{array}$ | 1903 | 68 | 70 | 14.4 | 31.8 | 4 | 5.0 | -- | -- | | | Repeat Set |
| 163 | Sept. 12 | Cape Lookout | $4.2 \dagger$ | 4520.7 | 12405.3 | 0717 | 84 | 75 | 14.8 | 31.7 | 50 | 6.5 | 4.162 | 0.949 | x | | |
| 164 | Sept. 12 | Cape Lookout | 9.8 | 4520.0 | 12412.2 | 0912 | 143 | -- | 15.8 | 31.5 | 180 | 8.0 | 0.891 | 0.248 | x | | |
| 165 | Sept. 12 | Cape Lookout | 5.6 | 4520.5 | 12408.0 | 1104 | 104 | 130 | 14.5 | 31.9 | 300 | 5.0 | 3.001 | 0.832 | | | Not quantitative |
| 166 | Sept. 13 | Yaguina Head | 6.7 | 4440.2 | 12413.2 | 1705 | 68 | 85 | 14.0 | 32.3 | 200 | 6.0 | 2.023 | 0.532 | x | | |
| 167 | Sept. 14 | Yaquina Head | 10.3 | 4440.2 | 12417.9 | 0706 | 80 | 120 | 13.4 | 32.9 | 70 | 5.0 | 2.396 | 0.926 | x | | |
| 168 | Sept. 14 | Yaquina Head | 14.9 | 44 40.1 | +24 24.5 | 0900 | 93 | 100 | 13.7 | 32.1 | 175 | 7.5 | 1.694 | 0.687 | x | | $\underset{\sim}{\omega}$ |
| 169 | Sept. 14 | Yachats | 15.1 | 4420.0 | 12427.0 | 1217 | 93 | 160 | 13.9 | 32.8 | 400 | 11.0 | 1.094 | 0.091 | x | | |
| 170 | Sept, 14 | Yachats | 10.5 | 4419.8 | 12420.5 | 1402 | 79 | 190 | 13.5 | -- | 300 | 7.5 | 2.497 | 0.499 | | | |
| 171 | Sept. 14 | Yachats | 4.7 | 4419.9 | 12412.6 | 1534 | 55 | 175 | 13+ | 32.9 | -- | 9.0 | 1.113 | 0.745 | | | |
| 172 | Sept. 14 | Yachats | 3.1 | 4419.1 | 12410.7 | 1629 | 51 | 150 | 13.0 | 33.1 | 300 | 6.5 | 2,710 | 1.007 | x | | |
| 173 | Sept. 14 | Yachats | 2.8 | 4418.6 | 12410.4 | 1735 | 51 | 175 | 12.4 | -- | 150 | 5.5 | 2.807 | 1.723 | | | |

set \#	Date	Transect/distance		$\begin{aligned} & \text { Depth } \\ & \text { (meters) } \end{aligned}$	Temp$\left({ }^{\circ} \mathrm{C}\right)$	Coho		Chinook		Chum		Sockeye				
				$\begin{aligned} & 101- \\ & 300 \\ & \mathrm{~mm} \\ & \hline \end{aligned}$		$301+$ mm	$\begin{aligned} & 101- \\ & 400 \\ & \text { nem } \\ & \hline \end{aligned}$	$401+$ mm	$\begin{aligned} & 101- \\ & 280 \\ & \text { mun } \end{aligned}$	$281+$ mm	$\begin{aligned} & 101- \\ & 280 \\ & \mathrm{~mm} \end{aligned}$	$281+$ TIII	Steelhead 164-260mm	cutthroat 181-360mm		
001	May 19	Waatch Pt.	5.3		62	10.8	0	13	2	0						
002	May 19	Waatch Pt.	9.9	318	10.4	1	8			0	2					
003	May 19	Waatch Pt.	14.7	218	11.5	0	3									
004	May 19	Waatch Pt.	20.1	143	12.2											
005	May 29	Wradicit PL.	24.7	137	11.6	0	1									
006	May 19	Waatch Pt.	5.7	59	9.5											
007	May 20	Sea Lion Rock	6.2	55	11.0	0	6									
008	May 20	Sea Lion Rock	10.4	93	11.7	0	1							6		
009	May 20	Sea Lion Rock	19.9	121	12.0									3		
010	May 20	Sea Lion Rock	20.2	154	11.9											
011*	May 21	Destruction Is.	10.3	55	10.0											
012*	May 21	Destruction Is.	10.7	55	--	0	1									
013	May 21	Destruction Is.	11.2	59	--	0	1	2	0							
014	May 21	Destruction Is.	15.1	80	11.2											
015	May 21	Destruction Is.	20.3	115	12.1											
016	May 21	Quinault R.	19.9	329	11.7	1	0	3	0					1		
017	May 21	Quinault R.	14.6	93	11.4											
018	May 21	Quinault R.	9.9	57	10.1	2	1	3	0			1		1		
019	May 22	Grays Harbor	10.1	57	11.6	0	20	0	7							
020	Hay 22	Grays Harbor	14.8	79	11.7	0	1	1	0							
021	May 22	Grays Harbor	9.9	55	11.4	1	0	1	1							
022	May 23	Willapa Bay	9.7	62	10.5	2	1	12	5							
023	May 23	Willapa Bay	9.7	62	--	0	1	3	1					1		
024*	May 23	Willapa Bay	13.8	82	--			2	1							
025	May 23	Willapa Bay	15.1	90	11.4	1	9	6	0					1		
026	May 23	Willapa Bay	20.0	124	11.5											
127	May 23	Willapa Bay	8.3	51	11.2			2	1							
028	May 24	Ocean park	9.6	62	10.8			1	4							
029	May 24	Cape Disapp.	7.0	49	11.4	1	门	5	1							
630*	Hay 24	Cape Disapp.	--	--	13.0											
031	Nay 24	Cape Disapp.	9.8	250	11.8	1	0	10	2					1		
032*	May 27	Seaside	5.6	53	10.7											
033	May 27	Seaside	5.7	57	10.4	0	1	4	0							
034	May 27	Seaside	10.1	86	10.4	0	1	24	0							
035	May 27	Seaside	10.0	88	11.0			10	1					1		
036	May 27	Seaside	14.7	119	11.4	2	0	19	9					1	-	
037	May 27	Seaside	20.5	143	10.6	0	3	11	0							
038	May 27	Seaside	25.0	152	10.3	1	0	12	0							

Appendix B. (cont.)

Appendix B. (cont.)

						Coho		Chinook		Chum		Sockeye		Steelhead $164-260 \mathrm{~mm}$	Cuttrhoat$181-260 \mathrm{~mm}$
$\begin{gathered} \text { Set } \\ \# \\ \hline \end{gathered}$	Date	Transect/d From Shore	stance (n.mi)	$\begin{aligned} & \text { Depth } \\ & \text { (meters) } \end{aligned}$	$\begin{aligned} & \text { Temp } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 101- \\ & 300 \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{gathered} 301+ \\ \mathrm{mma} \end{gathered}$	$\begin{aligned} & 101- \\ & 400 \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{gathered} 401+ \\ \mathrm{mm} \end{gathered}$	$\begin{aligned} & 101- \\ & 280 \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{gathered} 281+ \\ \text { man } \end{gathered}$	$\begin{aligned} & 101- \\ & 280 \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{gathered} 281+ \\ \mathrm{mm} \end{gathered}$		
109	June 17	Wecoma Beach	3.5	62	9.2										
110	June 17	Wecoma Beach	10.3	152	10.6										
111	June 18	Yaquina Head	14.3	93	9.7										
112	June 28	Yaquina Head	20.0	134	11.3	2	1								
113	June 18	Yaquina Head	25.2	285	13.4	1	4								
11.4	June 18	Yaquina Head	29.3	95	13.8										
115	June 19	Yaquina Head	10.1	77	9.2	13	0	1	0						
116	June 19	Yaquina Head	5.1	60	8.9			0	1						
117	June 19	Yachats	4.7	60	11.3	2	0	2	0						
118	June 19	Yachats	9.8	77	11.4			0	1						
119	June 19	Yachats	15.5	93	9.8										
120	June 19	Yachats	19.9	95	9.6										
121	June 20	Wecoma Beach	3.6	64	10.3										
122	June 20	Wecoma Beach	10.4	148	12.9										
123	June 20	Wecoma Beach	15.2	205	13.1	10	0			5	0				
124	June 20	Wecoma Beach	15.2	203	13.1	10	9								1
125	June 21	Cape Lookout	19.0	22	12.7	39	0			23	0				
126	June 21	Cape Lookout	24.0	59	13.3	7	0								
127	June 21	Cape Lookout	19.8	26	13.2	1	1								
128	June 21	Cape Lookout	1.3	11	9.0										
129	June 22	Cape Lookout	8.2	141	11.4	7	8	5	0						
130	June 22	Cape Lookout	14.5	190	12.1	125	2	1	0	23	0	1	0		

Appendix B. (cont.)
SEPTEMBER 1982 CRUISE

Set \#	Date	Transect/distance From Shore (n.mi)				Coho		Chinook		Chum		Pink		Sockeye	
				Depth (meters)	Temp $\left({ }^{\circ} \mathrm{C}\right.$)	$\begin{aligned} & 101- \\ & 420 \\ & \text { Hatil } \end{aligned}$	$\begin{gathered} \text { 421+ } \\ \text { mam } \end{gathered}$	$\begin{aligned} & 101- \\ & 400 \\ & \text { mimn } \end{aligned}$	$\begin{gathered} 401+ \\ \mathrm{mm} \end{gathered}$	$\begin{aligned} & 101- \\ & 280 \\ & \mathrm{~mm} \end{aligned}$	$\begin{gathered} 281+ \\ \mathrm{mma} \end{gathered}$	$\begin{aligned} & 101- \\ & 280 \\ & \mathrm{~mm} \end{aligned}$	$\begin{gathered} 281+ \\ \text { nim } \end{gathered}$	$\begin{aligned} & 101- \\ & 280 \\ & \text { man } \end{aligned}$	$\begin{gathered} 281+ \\ \mathrm{mm} \end{gathered}$
131	Sept. 4	Quinault R.	9.9	57	15.2	50	5	1	3						
132	Sept. 4	Quinault R.	14.7	93	15.4	4	1	1	0	13	0	1	0	1	0
133	Sept. 4	Quinault R.	20.2	571	15.1	0	1			13	0				
134*	Sept. 4	Quinault R.	20.0	571	16.1	1	0			3	0				
135*	Sept. 4	Quinault R.	25.3	686	16.8										
136	Sept. 5	Grays Harbor	9.8	55	14.8	1	0			119	0	44	0		
137	Sept. 5	Grays Harbor	12.7	70	15.0	1	0								
138	Sept. 5	Grays Harbor	15.2	77	15.5	5	1								
139	Sept. 5	Grays Harbor	15.1	79	15.6	12	0			6	0	2	0		
140	Sept. 5	Grays Harbor	20.3	106	17.0	1	0								
141	Sept. 5	Willapa Bay	8.7	55	16.2	1	0								
142	Sept. 6	Willapa Bay	8.3	55	15.8	1	0								
143	Sept. 6	Willapa Bay	12.4	77	16.1	13	0								
144	Sept. 6	Willapa Bay	12.0	77	16.1	2	0	1	0						
145	Sept. 6	Willapa Bay	14.9	88	16.1	5	0								
146	Sept. 6	Willapa Bay	20.2	126	16.5										
147	Sept. 6	Cape Disapp.	19.4	137	15.4										
148	Sept. 6	Cape Disapp.	14.9	126	15.5	7	0								
149	Sept. 7	Cape Disapp.	7.0	53	15.6	31	5	1	2						
150	Sept. 7	Cape Disapp.	10.0	79	15.8	56	0	0	1						
151	Sept. 7	Cape Disapp.	9.2	77	--	21	0								
152*	Sept. 7	Cape Disapp.	15.5	128	16.5										
153*	Sept. 7	Seaside	19.3	137	17.4										
154	Sept. 8	Tillamook	2.4	57	14.1	98	4	0	4						
155	Sept. 8	Tillamook	5.1	79	15.0	11	0								
156	Sept. 9	Hug Point	9.3	104	16.5										
157	Sept. 9	Hug Point	15.1	144	16.6										
158	Sept. 9	Nehalem B.	20.1	172	16.7										
159	Sept. 9	Nehalem B.	14.8	143	15.9										
160	Sept. 9	Nehalem B.	3.1	55	15.2	1	2								
161	Sept. 11	Cape Lookout	2.0	55	13.9	3	3								

Appendix B. (cont.)

Set \#	Date	Transect/distance From Shore (n.mi)		Depth (meters)	$\begin{aligned} & \text { Temp } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	Coho		Chinook		Chum		Pink		Sockeye		
				$\begin{aligned} & 101- \\ & 420 \\ & \mathrm{mma} \\ & \hline \end{aligned}$		$\begin{gathered} 421+ \\ \operatorname{mon} \end{gathered}$	$\begin{aligned} & 101- \\ & 400 \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{gathered} 401+ \\ \mathrm{mm} \end{gathered}$	$\begin{aligned} & 101- \\ & 280 \\ & \text { nim } \end{aligned}$	$\begin{gathered} 281+ \\ \mathrm{mm} \end{gathered}$	$\begin{aligned} & 101- \\ & 280 \\ & \text { min } \end{aligned}$	$\begin{gathered} 281+ \\ \mathrm{mm} \end{gathered}$	$\begin{aligned} & 101- \\ & 280 \\ & \text { nuril } \end{aligned}$	$\begin{gathered} 281+ \\ m \mathrm{~mm} \end{gathered}$		
152	Sept. ii	Cape Lookout	4.9		68	14.4	26	0								
163	Sept. 12	Cape Lookout	4.2	84	14.8	14	0									
164	Sept. 12	Cape Lookout	9.8	143	15.8											
165*	Sept. 12	Cape Lookout	5.6	104	14.5					1	0					
166**	Sept. 13	Yaquina Head	6.7	68	14.0	7	0									
167**	Sept. 14	Yaquina Head	10.3	80	13.4	1	1									
168**	Sept. 14	Yaquina Head	14.9	93	13.7	1	0									
169**	Sept. 14	Yachats	15.1	93	13.9	1	0									
170**	Sept. 14	Yachats	10.5	79	13.5											
171**	Sept. 14	Yachats	4.7	55	$13+$	2	1									
172**	Sept. 14	Yachats	3.1	51	13.0	7	0	3	0							
173**	Sept. 14	Yachats	2.8	51	12.4	0	1	1	0							

* Aborted or non-quantitative sets
*Only 310 m of sein set

Seine Purse	$\begin{aligned} & \text { i.D. } \end{aligned}$	Transect	$\underset{\text { Yr }_{\text {Brood }}}{ }$	$\begin{aligned} & \text { Tag } \\ & \text { Code } \end{aligned}$	Agency	Hatchery	ocean Site		Release Date	$\begin{gathered} \text { Recovery } \\ \text { Date } \end{gathered}$	$\begin{gathered} \text { Days } \\ \begin{array}{c} \text { Since } \\ \text { Selease } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { N-S Distance } \\ \text { from Ocean } \\ \text { Entry } \end{gathered}$		$\begin{gathered} \begin{array}{c} \text { Length } \\ \text { at } \\ \text { Recovery } \end{array} \\ \hline \end{gathered}$
125	1011	Cape Looksont	${ }^{11}$	7－24－32	onfw	Cascade	columbia R		3／V1／82	21／vI／82	18	54	s	160
121	（110）	vulamult	\％11\％	1－2， 1 － 34	（1）W	1usinate	cotumila k		1／W1／6	4／11／42	18	1.5	N	120
150	003	Cape disapp．	${ }^{80}$	7－25－49	ODEW	Sandy	Columbia		3／1v／82	7／18／82	157 130	5	N	2018 353
50	002	Cape disapp．	9	25－5n	nnfw	Sandy	Columbia		30／Iv／日2	1／VI／ 82	＋32	14	s	153
59	008	Hecoma	80	7－25－56	CoFw	Sandy	columbia A		30／Iv／82	1／VI／82	32	94	s	163
61	002	yaquina	80	7－25－56	${ }^{\text {OfFW }}$	Sandy Sandy	columbla a	R．	30／IV／B2	1／VI／82	32	74	s	152
59	007	wecoma	${ }_{80}^{80}$	7－25－57	ODFW	Sandy	columbia	a．	30／IV／82	1／vi／82	32	74	s	150
108	01	Wecoma ${ }_{\text {cape }}$	80	7－25－57	ODFW	Sandy	columbia		30／1v／82	16／VI／82	47	55	s	163
123	01	wecoma	80	7－25－58	ODFw	Sandy	columbia R	R．	30／7v／82	20／V1／82	51	75	s	174
131	004	Quinault	80	5－10－35	EwS	Eaqle cr．	columbia ${ }^{\text {a }}$	R．	6／V762	4／1x／82	121	74	s	156
59	017	wecoma	80	5－10－35	FWS	Eagle cr．	colunbia		6／V／82 $6 / N / 82$		35	15	N	147
${ }^{6}$	003	Ocean Pk	80	5－10－36	${ }_{\text {YWS }}^{\text {FWS }}$	${ }_{\text {Eaqle }}{ }_{\text {Eagle }}$ Cr．	columbia ${ }_{\text {cola }}$		$3 / \mathrm{N} / 82$	1／VI／82	29	75	5	146
58	001	Wecoma	80	${ }_{5}^{5-10-37}$	${ }_{\text {FWS }}^{\text {FWS }}$	Eagle ${ }_{\text {er }}$ Cr．	columbias		6N／82	13／VI／a2	38	25	5	204
101	010	Hug Pt．	80	$5-10038$ $5-10-38$	${ }_{\text {FWS }}^{\text {FWS }}$	Eagle Eagle cr	columbia		6／v／82	22／V1／82	47	54	s	156
130	${ }^{0} 004$	Cape Lookout	80	5－10－38 $5-10-39$	FwS	Eagle cr．	columbia		6／V／82	21／VI／82	46	55	s	156
143	001	willapa bay	80	5－10－39	％	Eagle cr．	columbia E	8．	6／V／82	6／IX／82	123	25		317
59	003	wecoma	80	5－10－40	FwS	Eagle Cr．	coiumbia		6／N／82 ${ }^{15 / \mathrm{IIH} / 82}$	16／VI／82	93	18		162
107	004	Cape Lrokout	${ }^{30}$	7－24－55	Oofw	Salmon Sa ．	Saimon R ．		1／v／日z	1／WI／82	31	2	s	147
59	014	Necoma	80 80 80	$7-24-56$ $7-24-56$	ODFW	Sas mon R Salmon R ．	Salmon R ．		1／V／82	22／VI／82	52	18	N	212
107	${ }_{0}^{002}$	Cape Lookout	80	7－24－58	ODFW	siletz	Siletz Bay		1／N／82	16／V1／82	46	25	N	204
150	005	Cape disapp．	80	7－24－59	Onfw	siletz	Siletz Bay		1／N／32	$7 / \mathrm{P} / 8 \mathrm{B2}$ $9 / \mathrm{XX/82}$	129 131	${ }_{45}^{85}$	N	336
160	001	Nehalam	80	7－24－58	ODFW	Siletz	Siletz Bay		－1／7／82	16／NI／82	46	55	N	210
108	003	Cape tiokout	80	7－24－6	ODFW	${ }_{\text {Fall }} \mathrm{Cr}$ ．	Alsea R．		15／111／82	16／V1／82	93	55	N	274
107	006	Cape Lookout	80	${ }_{\substack{\text { \％} \\ 7-25-34 \\ 7-254}}$	ODFW	${ }_{\text {Fall }} \mathrm{Cr}$ ．	Alsea R．		15／TII／82	16／VI／82	93	55	N	200
108	004	Cape lookout	80 80	${ }_{\substack{\text { c－25－8 } \\ 7-25-3}}$	ODFF	Butto Falls	Siuslaw R		11－27／V／81	18／1／1／82	－38	30	N	165
${ }_{61} 12$	${ }_{0} 001$	Yaquina	80	7－24－3	ojph	Rock Creek	winchester	Bay	17／111／82	1／N1／82	76	61	N	193
124	001	wecoma	80	7－24－3	ODEW	Rock creek	Hinchester	r bay	17／111／82	${ }^{20 / \mathrm{NI} / 82}$	95 97	${ }_{80}^{80}$	${ }_{N}^{N}$	205
123	002	Wecoma	a	－24－4	ODFW	Rock creek	Yaquina E		14／VI／82	8／1x／82	86	79	N	246
155	001	Tillamook Rk．	80	50－05－16 $50-75-33$	OAF	OAF	Yaquina вa		7／VII／82	7／1x／83	62	103	＊	242
150	002		${ }_{81}^{81}$	60－05－40	${ }_{\text {OAF }}$	OAF	Yaquina B	ay	24／VIII／62	8／［18／32	15	79	N	134
172	001	Yachats	81	60－05－40	onf	onf	Yaguina B	ay	24／VITI／82	14／1x／82	21	18	$\stackrel{ }{ }$	186
163	001	Cape Lookout	81	69－05－41	daf	${ }_{\text {OAF }}$	Yaquina ${ }^{\text {a }}$	这	24／V111／82	13／Tx／62	18	44	N	157
162	001	Cape Ewokout	${ }_{81}^{31}$	60－05－42	OAF	${ }_{\text {OAF }}^{\text {OAF }}$	Yaquina ${ }^{\text {y }}$			8／IX／82	74	79	，	245
154	002	Tillamook Rk．	${ }_{81}^{81}$	－60－05－55	OAF	OAF	Yaguina	ay	17／VITI／E2	8／X1／82	21	103	＊	182
171	${ }_{0} 001$	${ }_{\text {Yachats }}$	81	60－41－48	OAF	OAF	צaquina в	ay	7／V／82．	14／IX／82	130	17	s	406

Appendix C. (cont.)
1979 and 1980 Broxd Adult coho ${ }^{1}$

Purse Seine Set	$\begin{aligned} & \text { I.D. } \\ & \text { No. } \end{aligned}$	Transect	$\begin{aligned} & \text { Brood } \\ & \text { Yi } \end{aligned}$	Tag Code	Agency	Hatchery	Ocean Entry Site	$\begin{gathered} \text { Release } \\ \text { Date } \end{gathered}$	$\begin{gathered} \text { Recovery } \\ \text { Date } \\ \hline \end{gathered}$	Days Slnce Release	N-S Di from Entr	stance Ocean y	$\begin{gathered} \text { Length } \\ \text { at } \\ \text { Recovery } \\ \hline \end{gathered}$
45	--	Nehalem	79	5-7-57	TULA	Skykanish	Mid Puget Sd.	VI/ $\mathrm{Bl}^{\text {1 }}$	30/v/82	~329-159	(163	5) *	399
22	-	Willap	80	63-21-30	WDF	Deschutes/spun	So. Puget Sd.	7-8/V1/81	23/v/82	319-320	(103	5) *	444
4]	--	Warrenton	79	63-21-30	WDF	Deschutes/SQUA	So. Puget Sd.	7-8/vI/81	28/v/82	324-325	(136	s)*	433
İ	--	brays hidr.	79	6j-2i-3y	wur	Grcen K .	So. Puget Sd.	1/V/81	22/v/32	386	184	5) ${ }^{\text {a }}$	460
104	--	Nehalem	79	63-23-13	WDF	Wild	No. Puget Sd.	V/81	14/VI/82	*379-410	(163	s) *	455
47	--	Nehalem	79	63-22-3	WDF	Washougal	Columbia R .	27/V/81	30/V/32	368	35	5	515
41	=-	Warrenton	79	7-22-63	ODFW	Sandy	Columbia R.	1/V/81	28/v/32	392	7	S	480
171	-	Yachats	80	60-34-23	OAF	OAF	Yaquina Bay	11/VIII/81	14/1X/82	13 mo .	17	s	552

Figment marked 1981 Brood Coho Juveniles

$z z: \pm z z z$

$28 / \mathrm{XI} / \mathrm{T} \mathrm{E}$
$28 / \mathrm{XI} / \mathrm{TT}$
$28 / \mathrm{XI} / 2$
$28 / \mathrm{XI} / \mathrm{B}$
$28 / \mathrm{XI} / \mathrm{B}$
$28 / \mathrm{XI} / \mathrm{C}$

N

AFliendix C. (cont.)

Chinook (cont.)													
Fivese Silise Sot	$\begin{gathered} \text { 1.13. } \\ \text { Sis. } \end{gathered}$	Transect	$\begin{gathered} \text { Brood } \\ \mathrm{Yr} \\ \hline \end{gathered}$	Tag Code	Myency	Hatchery	Ocean Entry Site	Release pate	$\begin{gathered} \text { Recovery } \\ \text { Date } \\ \hline \end{gathered}$	Days Since Release		stance Ocean \qquad	Length at Recovery
91	0101	Breakers	80	7-20-54	ODFW	NcKenzie	Columbia R.	15/117/82	11/V1/82	98	8	N	280
3.4	${ }^{1} 16$	Seaside	80	7-25-18	'OFW	Mckenzie	Columbia R .	15/111/82	27/v/82	73	15	S	207
79	$0{ }^{0}$	willapa bay	80	7-24-10	ubrw	Cakridge	Columbia R.	15/1II/82	e/vi/82	85	26	N	247
86	: 11	Ocoan bark	80	7-24-19	')DFw	Oakridge	Columbia R.	15/III/82	10/V1/82	87	15	N	287
87	$0 \cdot 17$	neann tark	3,	7-24-23	20¢m	Ockrizac	Columbia R.		10,4142	8c-87	15	1	260
82	0.2	Willapa Bay	80	7-25-24	ODFW	Oakridge	Columbia R.	2-3/XI/61	10/VI/B2	219	25	N	150
+6	$\therefore 12$	Ocean rack	30	7-25-21	1)DFW	Marion Forks	Columbia R.	15/III/82	10/V1/B2	67	15	N	210
82	$\bigcirc 3$	Willara bay	30	7-25-26	PFW,	Marion Forks	Columbia R .	16/III/S2	10/VI/B2	86	25	N	143
$6: 2$	$\because 2$	Yagutrat	411	7-25-27	TLFR	Marion Forks	Columbia $\mathrm{R}_{\text {, }}$	17/1TI/82	1/VI/82	76	94	5	179
51	1	Nillaja Eay	41;	7-25-2\%	corw	Marion Forks	Columbia R.	17/111/82	9/VI/62	83	26	B	365
35	120	Scasidu	30	7-25-29	1)w	Marion Forks	Columbia R.	18,'TIT/g2	27/V/8.2	70	15	S	213
36 47	a:1	Seaside	(i)	7-25-	(jbjer	Marion Forks	Columbia R .	19/III/62	27/V/82	69	15	\$	186
47	:14	Occan Pazk	d	7-25-2!	rontw	Marion Forks	Columbia R.	19/111/82	10/VI/B2	83	15	N	228
34 51	-12	Soasido	H0	7-23-	: 2 FW	Round butte	Columbia R.	23/111/82	27/v/82	65	15	S	192
51	- 6	Cape Lookout Wecoma	\%0	7-23-:	CTY\%	Round Butte	Columbia R.	23/111/82	31/V/82	69	55	5	191
d1		Willapa Bay	40	7-23-!?	DD'W	Roura Butte	Columbia R .	23/III/82	8/VI/E2	77	26	S	302
22	$\therefore \mathrm{j} \cdot \mathrm{F}$	Willara bay	30	62-43-32	20msua	Dornsea	Siuslaw bay	XII/ 181	23/V/E2	2143-174	150	N	270
82	- 5	Willala bay	30	62-48-32	Domsea	Domsca	Siuslaw bay	XII/81	10/VI/82	*16i-191	150	N	309
67	1.)1	Yachats	80	7-25-.:	COF\%	Rock Creck	winchester Bay	3/111/82	2/VI/82	91	40	N	248
「: ${ }^{\text {f }}$!101	wecoma	\because	7-25-31:	ODF\%	Elk R.	Flk F.	27/1X/B1	31/w/92	247	73	:	318
30	\cdots	Sonsirip	\cdots	6-6,1-i	- LEC	Trinity 5	* lamath H .	VI, 61	27\%\%	$2696-726$	260	N	51 ;

[^3]
[^0]: *Adjusted to correct for the smaller area fished by the shorter seine in the last 8 sets (Appendix B).

[^1]: 3 One 550 min sockeye caught in May (Quinault R.): one 161 mom sockeye caught in September (Quinault R.
 4 No pinks caught in either May or June

[^2]: - Off a cape or point
 * Depth from navigation chart

[^3]: $1_{\text {infor }}$ at from a juverile coho was lost and ene CWT from an adult coho was unreadable.

